
ELSEVIER

Contents lists available at ScienceDirect

Tetrahedron

Synthesis and preliminary evaluation of duocarmycin analogues incorporating the 1,2,11,11a-tetrahydrocyclopropa[c]naphtho[2,3-e]indol-4-one (CNI) and 1,2,11,11a-tetrahydrocyclopropa[c]naphtho[1,2-e]indol-4-one (iso-CNI) alkylation subunits

Carla M. Gauss, Akiyuki Hamasaki, Jay P. Parrish, Karen S. MacMillan, Thomas J. Rayl, Inkyu Hwang, Dale L. Boger*

Department of Chemistry, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA

ARTICLE INFO

Article history: Received 17 December 2008 Received in revised form 21 February 2009 Accepted 24 February 2009 Available online 3 March 2009

ABSTRACT

Efficient syntheses and a preliminary evaluation of 1,2,11,11a-tetrahydrocyclopropa[c]naphtho[2,3-e]-indole (CNI) and 1,2,11,11a-tetrahydrocyclopropa[c]naphtho[1,2-e]indole (iso-CNI), and their derivatives containing an anthracene and phenanthrene variant of the CC-1065 or duocarmycin alkylation subunit are detailed.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

CC-1065 (1),¹ the duocarmycins (2 and 3),²⁻⁴ and yatakemycin (4)⁵ are the parent members of a class of potent antitumor antibiotics that derive their properties through a sequence-selective alkylation of duplex DNA (Fig. 1).^{6,7} Extensive studies have characterized their structural features responsible for the DNA alkylation reaction and have established fundamental relationships between their structure and reactivity or activity.⁶⁻¹¹ Aside from the structural complexity inherent in the alkylation subunit, they possess a stability that defies intuition. This is due to the vinylogous amide conjugation and stabilization of the cyclohexadienone structure, which is dominant over that activating the cross-conjugated cyclopropane.¹²⁻¹⁴ Accordingly, disruption of this vinylogous amide conjugation leads to remarkable increases in reactivity as large as 10⁴-fold¹⁴ that we have suggested is the source of catalysis for the DNA alkylation reaction.⁸⁻¹²

The synthesis of analogues containing deep-seated structural changes has been central to these studies providing insights not accessible through examination of the natural products themselves. The two most significant being the delineation of a fundamental parabolic relationship between reactivity and cytotoxic potency and that the catalysis for the DNA alkylation reaction likely entails a DNA binding induced conformation change that disrupts the alkylation subunit stabilizing vinylogous amide conjugation. Among the modified alkylation subunits introduced, the 1,2,9,9a-tetrahydrocyclopropa[c]benz[1,2-e]indol-4-one (CBI) alkylation subunit has emerged as the most extensively examined

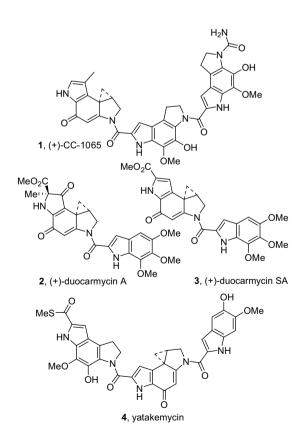


Figure 1.

^{*} Corresponding author. Tel.: +1 858 784 7522; fax: +1 858 784 7550. *E-mail address:* boger@scripps.edu (D.L. Boger).

Figure 2.

series, Figure 2. Not only is it the most synthetically¹⁹ accessible alkylation subunit in a rich series, but its derivatives exhibit biological properties^{18,20} that surpass those of **1** and **2** while approaching those of **3**, and it exhibits a stability and inherent reaction regioselectivity that are near optimal.¹⁸

As an extension of these studies, we report herein two new classes of CBI-based agents that incorporate the extended anthracene and phenanthrene skeleton. Prospective modeling of the former linear 1,2,11,11a-tetrahydrocyclopropa[c]naphtho[2,3-e]-indol-4-one (CNI) suggested that its derivatives may effectively bind DNA with its extended alkylation subunit productively enhancing catalysis of the DNA reaction, whereas the latter angular 1,2,11,11a-tetrahydrocyclopropa[c]naphtho[1,2-e]indol-4-one (iso-CNI) derivatives may suffer destabilizing steric interactions precluding effective DNA alkylation.

2. Results and discussion

2.1. Synthesis

The synthesis of the CNI subunit began by condensation of commercially available aldehyde 11 with the known phosphonate²¹ to provide 12, and was followed by selective removal of the tertbutyl ester to provide the carboxylic acid 13 (Scheme 1). Friedel-Crafts cyclization effected by treatment with Ac₂O and subsequent hydrolysis of the resulting acetate provided phenol 14 (61%, two steps). Benzyl protection of the phenol (77%) and LiOH hydrolysis of 15 gave 16 (100%). Treatment of 16 with the Shioiri-Yamada reagent (DPPA) in t-BuOH and subsequent Curtius rearrangement of the intermediate acyl azide provided the Boc-protected amine 17 in 86%. Regioselective C4 bromination of 17 (74%) and subsequent Nalkylation of 18 with 1,3-dichloropropene afforded 19 (93%) and set the stage for a key 5-exo-trig aryl radical-alkene cyclization²² to provide 20. This latter cyclization was best effected in toluene (105 °C) and also served to reduce the C5 bromide that was used to direct the Friedel-Crafts cyclization of 13 to provide the linear anthracene skeleton versus the otherwise preferred phenanthrene skeleton.²³ Resolution of **20** by chromatographic separation on a semipreparative Chiralcel OD column provided both enantiomers cleanly, which were then subjected to hydrogenolysis to provide 21 (natural S enantiomer shown). Spirocyclization of 21 was effected by treatment with DBU in anhydrous CH₃CN to give N-Boc-CNI (22) in good yield (61%).

N-Boc deprotection of **21** and subsequent coupling of the amine hydrochloride salt with 5,6,7-trimethoxyindole-2-carboxylic acid (TMI) provided **23** (47%), which was spirocyclized to provide **24** (CNI-TMI) using DBU (60%, Scheme 2).

Scheme 1.

The synthesis of the *iso*-CNI subunit began by the preparation of **26** following the modified Stobbe condensation previously

Scheme 2.

described (Scheme 3). Selective removal of the *tert*-butyl ester, Friedel–Crafts cyclization to the phenanthrene effected by treatment with Ac₂O, and hydrolysis of the resulting acetate provided phenol **27** (86% over three steps). Benzyl protection of **27** (95%) and LiOH hydrolysis of **28** gave the carboxylic acid **29** (96%), which was subjected to a modified Curtius rearrangement for conversion to the Boc-protected amine **30**. Regioselective C4 bromination, subsequent *N*-alkylation with 1,3-dichloropropene, and 5-*exo-trig* aryl radical–alkene cyclization gave **33**. ²⁴ Resolution of **33** by chromatographic separation on a semipreparative Chiralcel OD column provided both enantiomers cleanly, which were subjected to transfer hydrogenolysis to provide **34** (natural *S* enantiomer shown). Spirocyclization of **34** was effected by treatment with NaH to give *N*-Boc-*iso*-CNI (**35**) in good yield (54%).

Scheme 3.

Boc deprotection of **34** and subsequent coupling of the amine hydrochloride salt with 5,6,7-trimethoxyindole-2-carboxylic acid (TMI) provided **36** (57%), which was spirocyclized to provide **37** (*iso*-CNI-TMI) using DBU (60%), Scheme 4.

2.2. Solvolysis reactivity

A key feature of the alkylation subunits is their intrinsic reactivity (stability), which correlates with the cytotoxic potency of

Scheme 4.

Compound	<i>k</i> , s ⁻¹	t _{1/2}
N-Boc-CBI	1.45 x 10 ⁻⁶	133 h
N-Boc-CNI	1.68 x 10 ⁻⁶	115 h
N-Boc-iso-CNI	1.32 x 10 ⁻⁶	146 h

Figure 3. Solvolysis reactivity, pH=3.

the corresponding derivatives. ¹⁶ Consequently, the solvolytic reactivity of both *N*-Boc-CNI (**22**) and *N*-Boc-*iso*-CNI (**35**) at pH 3 (50% buffer–MeOH, buffer=0.1 M citric acid, 0.2 M Na₂HPO₄, and deionized H₂O) was established and compared to that of the preceding analogues including *N*-Boc-CBI (Fig. 3). ¹⁸ Consistent with expectations and intrinsic to their structures, both *N*-Boc-CNI ($t_{1/2}$ =115 h) and *N*-Boc-CBI ($t_{1/2}$ =146 h) exhibited the remarkable stability of *N*-Boc-CBI ($t_{1/2}$ =133 h) even at pH 3. Both were approximately four-times more stable than the alkylation subunit of CC-1065 (*N*-Boc-CPI, $t_{1/2}$ =36 h)²⁵ and approach the stability of the alkylation subunit of duocarmycin SA and yatakemycin (*N*-Boc-DSA, $t_{1/2}$ =177 h). ^{26,27}

2.3. Cytotoxic activity

The cytotoxic activity of the key CNI and *iso*-CNI derivatives was established against L1210, a leukemia cell line utilized extensively in past studies, Figure 4. Consistent with expectations based on their relative reactivity, the cytotoxic activity of both *N*-Boc-CNI (**22**) and CNI-TMI (**24**) proved nearly indistinguishable from the corresponding CBI derivative. Notably, (+)-CNI-TMI exhibited the exceptionally potent activity observed with (+)-CBI-TMI (IC $_{50}$ =30 pM), and the unnatural enantiomers were 10–100 fold less active. In contrast, the *iso*-CNI derivatives were >10-fold less active than either the CBI or CNI derivatives indicating that they exhibit a diminished cytotoxic activity relative to expectations based on their reactivity. Such observations are consistent with

Compound nat. enantiomer	IC ₅₀	Compound unnat. enantiomer	IC ₅₀
(+)-N-Boc-CBI	80	(-)-N-Boc-CBI	900
(+)-CBI-TMI	0.03	(-)-CBI-TMI	2
(+)-N-Boc-CNI	60	(-)-N-Boc-CNI	800
(+)-CNI-TMI	0.03	(-)-CNI-TMI	8.0
(+)-N-Boc-iso-CNI	500	(-)-N-Boc-iso-CNI	10000
(+)-iso-CNI-TMI	1	(-)-iso-CNI-TMI	20

Figure 4. In vitro cytotoxic activity, L1210 (nM).

modeling studies that suggest they suffer from a less effective interaction with the minor groove of duplex DNA.

3. Conclusions

Efficient syntheses and a preliminary evaluation of 1,2,11,11a-tetrahydrocyclopropa[c]naphtho[2,3-e]indole (CNI) and 1,2,11,11a-tetrahydrocyclopropa[c]naphtho[1,2-e]indole (iso-CNI), and their derivatives containing an anthracene and phenanthrene variant of the CC-1065 or duocarmycin alkylation subunit are detailed. Both were found to exhibit a reactivity comparable with the prototypical CBI derivatives, but only the former CNI derivatives exhibited the comparable cytotoxic activity. Further studies into the origin of the distinctions are in progress and will be reported in due course.

4. Experimental section

4.1. 4-tert-Butyl 1-ethyl 2-(1-bromonaphthalen-2-yl-methylene)butanedioate (12)

A solution of 4-tert-butyl 1-ethyl 2-(diethoxyphosphoryl)succinate²¹ (8.61 g, 25.4 mmol, 1.1 equiv) in THF (75 mL) was cooled to 0 °C and NaH (60% oil dispersion, 1.02 mg, 25.4 mmol, 1.1 equiv) was added in a single addition. The reaction mixture was gradually warmed to room temperature over 1 h. The mixture was cooled to 0 °C and a solution of 1-bromonaphthalene-2-carbaldehyde (5.43 g, 23.1 mmol) in THF (40 mL) was added and the mixture was warmed to room temperature and stirred for 16 h. The mixture was quenched with the addition of water (100 mL) and diluted with EtOAc (100 mL). The organic layer was washed with water (100 mL), saturated aqueous NaCl (100 mL), dried (Na₂SO₄), and concentrated in vacuo. Flash chromatography (SiO₂, 4×12 cm, 0-10% EtOAc-hexanes) afforded 12 (6.62 g, 68%) as a yellow viscous oil. R_f =0.49 (10% EtOAc-hexanes); ¹H NMR (400 MHz, CDCl₃) δ 8.34 (d, J=8.9 Hz, 1H), 8.05 (s, 1H), 7.85-7.81 (m, 2H), 7.62 (dt, <math>J=1.4, 7.6 Hz, 1H), 7.56 (dt, J=1.4, 7.5 Hz, 1H), 7.40 (d, J=8.4 Hz, 1H), 4.33 (q, J=6.1 Hz, 2H), 3.32 (s, 2H), 1.46 (s, 9H), 1.38 (t, J=7.1 Hz, 3H); 13 C NMR (100 MHz, CDCl₃) δ 170.0, 167.0, 141.5, 134.0, 133.8, 132.2, 128.5, 128.1, 127.8, 127.7, 127.20, 127.18, 126.5, 124.4, 81.0, 61.2, 35.1, 28.0 (3C), 14.2; IR (film) ν_{max} 2977, 2948, 1725, 1720, 1367, 1256, 1152 cm⁻¹; HRMALDI-FTMS (DHB) m/z 441.0679 (M+Na⁺, C₂₁H₂₃BrO₄ requires 441.0672).

4.2. (*E*)-3-(Ethoxycarbonyl)-4-(1-bromonaphthalen-2-yl)-but-3-enoic acid (13)

A solution of **12** (1.62 g, 3.87 mmol) in TFA (18 mL) was cooled to 0 °C and H₂O (2 mL) was added. The reaction mixture was gradually warmed to room temperature over 2 h before the solvent was removed in vacuo, followed by azeotropic distillation with toluene (3×50 mL) until the TFA was completely removed. Flash chromatography (SiO₂, 2.5×25 cm, 50–99% EtOAc–hexanes gradient) afforded **13** (1.20 g, 86%) as a white solid. Mp 171–173 °C (dec); R_f =0.30 (10% EtOAc–hexanes); ¹H NMR (500 MHz, CDCl₃) δ 8.34 (d, J=8.4 Hz, 1H), 8.13 (s, 1H), 7.86 (s, 1H), 7.85 (s, 1H), 7.64 (dt, J=1.2, 7.6 Hz, 1H), 7.58 (dt, J=1.0, 7.5 Hz, 1H), 7.41 (d, J=8.4 Hz, 1H), 4.36 (q, J=7.1 Hz, 2H), 3.46 (s, 2H), 1.39 (t, J=7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 176.9, 166.9, 142.7, 134.1, 133.3, 132.1, 128.2, 128.0, 127.9, 127.4, 127.2, 127.1, 126.3, 124.4, 61.5, 33.8, 14.2; IR (film) $\nu_{\rm max}$ 3226, 2950, 2919, 2847, 1707, 1461 cm⁻¹; HRMALDI–FTMS (DHB) m/z 385.0049 (M+Na⁺, C₁₇H₁₅BrO₄ requires 385.0046).

4.3. Ethyl 4-acetoxy-9-bromoanthracene-2-carboxylate

A solution of 13 (800 mg, 2.21 mmol) in Ac₂O (45 mL) was treated with NaOAc (480 mg, 11.05 mmol) and warmed at 110 °C

for 20 h. The mixture was cooled and the solvent was removed in vacuo, followed by azeotropic distillation with toluene (3×50 mL) until the Ac₂O was completely removed. Flash chromatography (SiO₂, 3.5×16 cm, 6-16% EtOAc-hexanes gradient) afforded ethyl 4-acetoxyphenanthrene-2-carboxylate (170 mg, 25%) as a yellow film and the title compound (400 mg, 61%) as a yellow solid. Mp 71-73 °C; R_f =0.49 (10% EtOAc-hexanes); ¹H NMR (400 MHz, CDCl₃) δ 9.23 (s, 1H), 8.52 (d, J=8.8 Hz, 1H), 8.43 (s, 1H), 8.00 (d, *I*=8.4 Hz, 1H), 7.83 (s, 1H), 7.65 (t, J=7.6 Hz, 1H), 7.57 (t, J=7.5 Hz, 1H), 4.49 (q, J=7.1 Hz, 2H), 2.56 (s, 3H), 1.48 (t, J=7.1 Hz, 3H), 1.45 (t, J=6.1 Hz, 3H); ¹³C NMR $(100 \text{ MHz}, \text{CDCl}_3) \delta 169.5, 166.1, 147.8, 134.4, 131.7, 131.0, 129.9,$ 129.4, 129.3, 128.2, 128.1, 127.5, 125.7, 121.4, 117.0, 104.2, 61.0, 20.7, 14.7; IR (film) ν_{max} 2958, 1769, 1715, 1365, 1231, 1197 cm⁻¹; HRMALDI-FTMS (DHB) m/z 409.0058 (M+Na⁺, C₁₉H₁₅BrO₄ requires 409.0046).

For ethyl 4-acetoxyphenanthrene-2-carboxylate: yellow solid. $^1\mathrm{H}$ NMR (400 MHz, CDCl₃) δ 9.01 (m, 1H), 8.20 (s, 1H), 7.91 (m, 1H), 7.75 (d, J=7.7 Hz, 1H), 7.67 (d, J=7.7 Hz, 1H), 7.61 (m, 4H), 4.41 (q, J=6.4 Hz, 2H), 2.55 (s, 3H), 1.40 (t, J=6.4 Hz, 3H); $^{13}\mathrm{C}$ NMR (100 MHz, CDCl₃) δ 168.4, 166.3, 134.7, 133.0, 131.4, 129.9, 129.6, 129.5, 129.4, 127.3, 127.2, 127.1, 126.5, 115.8, 62.1, 22.0, 4.7; IR (film) ν_{max} 1776, 1731, 1558, 1367, 1218, 1181, 1036 cm $^{-1}$; HRMALDI–FTMS (DHB) m/z 331.0947 (M+Na $^+$, C $_{19}\mathrm{H}_{16}\mathrm{O}_{4}$ requires 331.0941).

4.4. Ethyl 9-bromo-4-hydroxyanthracene-2-carboxylate (14)

A solution of ethyl 4-acetoxy-9-bromoanthracene-2-carboxylate (2.00 g, 5.18 mmol) in EtOH (52 mL) was treated with K₂CO₃ (787 mg, 5.70 mmol, 1.1 equiv) and the reaction mixture was stirred for 4 h at 23 °C. The mixture was diluted with EtOAc (50 mL), washed with saturated aqueous NH₄Cl (100 mL), dried (Na₂SO₄), and concentrated in vacuo. Flash chromatography (SiO₂, 4×30 cm, 0-10% EtOAc-hexanes gradient) afforded **14** (1.78 g, 100%) as a yellow solid. Mp 197–199 °C; R_f =0.28 (16% EtOAchexanes); ¹H NMR (500 MHz, CDCl₃) δ 8.95 (s, 1H), 8.88 (s, 1H), 8.54 (d, *J*=8.5 Hz, 1H), 8.07 (d, *J*=8.5 Hz, 1H), 7.65 (t, *J*=7.7 Hz, 1H), 7.58 (t, *J*=7.7 Hz, 1H), 7.41 (s, 1H), 5.76 (br s, 1H), 4.49 (q, *J*=7.0 Hz, 2H), 1.48 (t, J=7.0 Hz, 3H); ¹H NMR (400 MHz, DMSO- d_6) δ 11.09 (s, 1H), 8.93 (s, 1H), 8.57 (s, 1H), 8.36 (dd, *J*=0.8, 8.8 Hz, 1H), 8.23 (d, J=8.5 Hz, 1H), 7.72 (dt, J=1.2, 7.7 Hz, 1H), 7.61 (dt, J=1.5, 7.5 Hz,1H), 7.35 (d, *J*=1.3 Hz, 1H), 4.39 (q, *J*=7.1 Hz, 2H), 1.38 (t, *J*=7.1 Hz, 3H); IR (film) v_{max} 3409, 2953, 1697, 1595, 1243, 1107, 1031 cm⁻¹; HRMALDI-FTMS (DHB) m/z 344.0045 (M⁺, C₁₇H₁₃BrO₃ requires 344.0048).

4.5. Ethyl 4-benzyloxy-9-bromoanthracene-2-carboxylate (15)

A solution of **14** (800 mg, 2.33 mmol) in DMF (23 mL) was treated with K₂CO₃ (354 mg, 2.56 mmol, 1.1 equiv) and after 5 min, BnBr (0.31 mL, 2.56 mmol, 1.1 equiv) was added. The mixture was stirred for 3.5 h at 23 °C, then diluted with EtOAc (50 mL) and washed with saturated aqueous NH₄Cl (100 mL). The organic layer was dried (Na₂SO₄) and concentrated in vacuo. Flash chromatography (SiO₂, 4×30 cm, 0–10% EtOAc–hexanes gradient) afforded **15** (777 mg, 1.78 mmol, 77%) as a yellow solid. Mp 124–126 °C; R_f =0.50 (16% EtOAc-hexanes); ¹H NMR (500 MHz, CDCl₃) δ 8.87 (s, 1H), 8.84 (s, 1H), 8.47 (d, *J*=8.8 Hz, 1H), 7.98 (d, *J*=8.1 Hz, 1H), 7.62– 7.58 (m, 3H), 7.53-7.40 (m, 5H), 5.34 (s, 2H), 4.50 (q, *J*=7.0 Hz, 2H), 1.52 (t, J=7.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.1, 155.0, 137.0, 133.2, 131.6, 130.4, 129.2, 129.1, 128.7, 128.2, 127.80, 127.77, 127.72, 126.9, 126.4, 124.4, 123.9, 122.3, 102.2, 71.0, 61.8, 14.9; IR (film) v_{max} 1717, 1653, 1558 cm⁻¹; HRMALDI-FTMS (DHB) m/z434.0529 (M⁺, C₂₄H₁₉BrO₃ requires 434.0512).

4.6. 4-Benzyloxy-9-bromoanthracene-2-carboxylic acid (16)

A solution of **15** (220 mg, 0.507 mmol) in 3:1:1 (v/v/v) THF-MeOH-H₂O (5 mL) was treated with LiOH (59 mg, 1.39 mmol, 5 equiv) and stirred for 2 h at 23 °C. HCl (4 N, 10 mL) was added and the mixture was diluted with CH₂Cl₂ (25 mL). The organic layer was washed with H₂O (3×10 mL), dried (Na₂SO₄), and concentrated in vacuo. Flash chromatography (SiO₂, 1.5×12.7 cm, 50-100% EtOAchexanes gradient) afforded 16 (204 mg, 100%) as a yellow solid. Mp 291–293 °C (dec); R_f =0.32 (50% EtOAc-hexanes); ¹H NMR $(500 \text{ MHz}, \text{DMSO-}d_6) \delta 13.40 \text{ (brs, 1H)}, 8.89 \text{ (s, 1H)}, 8.82 \text{ (s, 1H)}, 8.46$ (d, J=8.8 Hz, 1H), 8.32 (d, J=8.5 Hz, 1H), 7.80-7.76 (m, 1H), 7.68-7.64(m, 3H), 7.50 (m, 3H), 7.42–7.38 (m, 1H), 5.40 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 168.6, 155.6, 137.9, 133.7, 131.8, 131.4, 131.3, 131.0, 130.0, 129.4, 129.2, 129.0 (2C), 128.3, 128.2 (2C), 127.4, 124.6, 123.8, 123.1, 103.7, 71.4; IR (film) ν_{max} 3410, 2921, 2850, 1685, 1558, 1435, 1324 cm⁻¹; HRMALDI-FTMS (DHB) m/z 406.0212 (M⁺, C₂₂H₁₅BrO₃ requires 406.0205).

4.7. 4-Benzyloxy-2-(*tert*-butyloxycarbonyl)amino-9-bromoanthracene (17)

A solution of 16 (50 mg, 0.123 mmol) in distilled t-BuOH (1.23 mL) was treated with distilled Et₃N (18.0 μ L, 0.129 mmol) and DPPA (26.5 μ L, 0.123 mmol, 1 equiv). The mixture was heated at 80 °C for 20 h then cooled to room temperature and diluted with EtOAc (1 mL). The solution was washed with saturated aqueous NaHCO₃ (2×10 mL), H₂O (10 mL), and saturated aqueous NaCl (10 mL). The organic layer was dried (Na₂SO₄) and concentrated in vacuo. Flash chromatography (SiO₂, 1×11 cm, 17% EtOAc-hexanes) afforded 17 (50.4 mg, 0.105 mmol, 86%) as an orange solid. Mp 110-112 °C; R_f =0.36 (16% EtOAc-hexanes); ¹H NMR (500 MHz, CDCl₃) δ 8.83 (s, 1H), 8.43 (d, J=8.4 Hz, 1H), 7.98 (d, J=8.4 Hz, 1H), 7.88 (s, 1H), 7.59 (m, 3H), 7.41 (m, 4H), 7.33 (br s, 1H), 6.85 (s, 1H), 5.32 (s, 2H), 1.60 (s, 9H); $^{13}{\rm C}$ NMR (100 MHz, CDCl $_3)$ δ 155.4, 152.7, 137.6, 136.5, 131.6, 131.4, 130.6, 129.3, 128.7, 128.2, 127.8, 127.6, 127.0, 124.7, 123.0, 121.9, 120.2, 105.3, 98.3, 80.9, 71.5, 28.4 (3C); IR (film) ν_{max} 3323, 2974, 2923, 1697, 1635, 1425, 1235, 1154 cm⁻¹; HRMALDI-FTMS (DHB) m/z 500.0834 (M+Na⁺, C₂₆H₂₄BrNO₃ requires 500.0832).

4.8. 4-Benzyloxy-2-(*tert*-butyloxycarbonyl)amino-1,9-dibromoanthracene (18)

A solution of 17 (25 mg, 0.052 mmol) in anhydrous THF (120 μ L) at −78 °C was treated with anhydrous TsOH (1.0 mg, 0.0052 mmol, 0.1 equiv, dried at 50 °C under high vacuum overnight) in THF (20 μL). The solution was stirred for 5 min before NBS (9.3 mg, 0.052 mmol, dried over P₂O₅ overnight) was added. The vial was protected from light and allowed to stir at -78 °C for 3 h. The reaction mixture was warmed to 23 °C and diluted with saturated aqueous NaHCO₃ (1 mL). The mixture was diluted with EtOAc (25 mL) and washed with saturated aqueous NaHCO₃ (10 mL), H₂O (10 mL), and saturated aqueous NaCl (10 mL). The organic layer was dried (Na₂SO₄) and concentrated in vacuo. Flash chromatography (SiO₂, 1×11 cm, 0–7% EtOAc–hexanes gradient) afforded 2-(tert-butyloxycarbonyl)amino-4-hydroxy-1,9dibromoanthracene (6.2 mg, 26%) as a tan solid and 18 (21.4 mg, 74%) as a yellow solid. R_f =0.34 (10% EtOAc-hexanes); ¹H NMR (400 MHz, CDCl₃) δ 8.89 (s, 1H), 8.63 (d, J=8.9 Hz, 1H), 8.08 (s, 1H), 7.95 (d, *J*=8.4 Hz, 1H), 7.82 (s, 1H), 7.63–7.59 (m, 3H), 7.50–7.40 (m, 4H), 5.33 (s, 2H), 1.60 (s, 9H); 13 C NMR (125 MHz, CDCl₃) δ 154.4, 152.6, 138.4, 136.2, 133.8, 130.6, 128.9, 128.7, 128.6, 128.3, 128.2, 128.1, 128.0, 125.6, 124.8, 122.5, 118.7, 98.4, 96.3, 81.4, 70.8, 28.3; IR (film) ν_{max} 2923, $2841, 1728, 1615, 1548, 1467, 1348, 1231, 1149 \ cm^{-1}; HRMALDI-FTMS$ (DHB) m/z 577.9929 (M+Na⁺, C₂₆H₂₃Br₂NO₃ requires 577.9937).

For 2-(tert-butyloxycarbonyl)amino-4-hydroxy-1,9-dibromoanthracene. Orange solid; R_J =0.30 (10% EtOAc-hexanes); ¹H NMR (500 MHz, CDCl₃) δ 8.85 (s, 1H), 8.66 (d, J=8.5 Hz, 1H), 8.07 (d, J=7.7 Hz, 1H), 7.82 (t, J=7.0 Hz, 1H), 7.72 (t, J=7.0 Hz, 1H), 7.09 (s, 1H), 1.58 (s, 9H); IR (film) ν_{max} 3374, 2985, 2912, 1743, 1666, 1605, 1462, 1253, 1149 cm⁻¹.

4.9. 2-[*N*-(*tert*-Butyloxycarbonyl)-*N*-(3-chloroprop-2-en-1-yl)-amino]-4-benzyloxy-1,9-dibromoanthracene (19)

A solution of 18 (1.65 g, 2.96 mmol) in DMF (50 mL) was treated with Bu₄NI (55 mg, 0.148 mmol) under Ar. The mixture was cooled to 0 °C and NaH (60% suspension in mineral oil, 296 mg, 7.40 mmol, 2.5 equiv) was added. The solution was stirred for 0.5 h and 1,3dichloropropene (820 µL, 8.88 mmol, 3 equiv) was added. The vial was protected from light and allowed to stir at 0 °C for 2 h before being treated with saturated aqueous NaHCO₃ (5 mL). The mixture was extracted with Et₂O (3×25 mL), and the combined organic layers were washed with H2O (3×20 mL), dried (Na2SO4), and concentrated in vacuo. Flash chromatography (SiO2, 3×20 cm, 16% EtOAc-hexanes) afforded 19 (1.74 g, 2.75 mmol, 93%) as a yellow solid as a mixture of E- and Z-olefin isomers. Mp 67–69 °C; R_f =0.35 (10% EtOAc-hexanes); ¹H NMR (500 MHz, acetone- d_6) δ 9.07 (d, *J*=4.4 Hz, 1H), 8.63 (d, *J*=8.8 Hz, 1H), 8.12 (m, 1H), 7.71 (t, *J*=7.7 Hz, 1H), 7.64 (m, 2H), 7.58 (t, *J*=7.0 Hz, 1H), 7.47 (m, 2H), 7.40 (app t, J=7.4 Hz, 1H), 7.04 (d, J=16.0 Hz, 1H), 6.23 (m, 1H), 6.15 (m, 1H), 5.47 (m, 2H), 4.67 and 4.63 (two d, *I*=6.3, 5.8 Hz, 1H), 4.38–4.48 (m, 1H), 4.14 (m, 1H), 1.36 (s, 9H); IR (film) ν_{max} 2923, 2851, 1697, 1610, 1462, 1369. 1262. 1153 cm⁻¹: HRMALDI-FTMS (DHB) m/z 552.0801 $(M^+-Br, C_{29}H_{27}BrClNO_3 requires 552.0801).$

4.10. 5-(Benzyloxy)-3-(*tert*-butyloxycarbonyl)-1-(chloromethyl)-1,2-dihydronaphtho[2,3-*e*]indole (20)

A solution of **19** (78 mg, 0.123 mmol) in toluene (3 mL) was degassed with Ar and treated with AIBN (4 mg, 24.6 μmol, 0.2 equiv) and Bu₃SnH (83 μL, 0.308 mmol, 2.5 equiv). A stream of Ar was bubbled through the solution for 10 min before the reaction vessel was closed and warmed at 105 °C for 3 h. The mixture was cooled to 23 °C and concentrated in vacuo. Flash chromatography (SiO₂, 1×15 cm, 67% benzene–hexanes) afforded **20** (40 mg, 0.084 mmol, 69%) as a yellow solid. Mp 152–154 °C; R_f =0.31 (16% EtOAc–hexanes); ¹H NMR (500 MHz, CDCl₃) δ 8.87 (s, 1H), 8.12 (s, 1H), 8.00 (d, J=8.1 Hz, 1H), 7.95 (d, J=8.4 Hz, 1H), 7.61 (br m, 2H), 7.48 (m, 4H), 7.42 (m, 2H), 5.35 (s, 2H), 4.32 (br m, 1H), 4.20 (app t, J=9.9 Hz, 1H), 4.09 (m, 2H), 3.52 (app t, J=10.5 Hz, 1H), 1.63 (s, 9H); IR (film) $\nu_{\rm max}$ 2964, 2920, 1699, 1621, 1571, 1454, 1404, 1363, 1337, 1143 cm⁻¹; HRMALDI–FTMS (DHB) m/z 496.1631 (M+Na⁺, C₂₉H₂₈ClNO₃ requires 496.1650).

4.11. Resolution of 20

The enantiomers of **20** were resolved on a HPLC semipreparative Diacel Chiralcel OD column (10 μ m, 2×25 cm) using 5% *i*-PrOH-hexane eluant (8 mL/min). The enantiomers eluted with retention times of 12.3 min (unnatural enantiomer) and 14.4 min (natural enantiomer, α =1.17).

4.12. 3-(*tert*-Butyloxycarbonyl)-1-(chloromethyl)-5-hydroxy-1,2-dihydro-3*H*-naphtho[2,3-*e*]indole (21, *seco-N*-Boc-CNI)

A solution of **20** (89 mg, 0.188 mmol) in THF (2 mL) was treated with a catalytic amount of 10% Pd–C (2 mg) and placed under 1 atm of H₂. The mixture was stirred at 23 °C for 1.5 h, filtered through a Celite plug, and concentrated in vacuo. Flash chromatography (SiO₂, 1×10 cm, 0–25% EtOAc/hexanes gradient) afforded **21** (72 mg,

100%) as a white solid. Mp 187–188 °C (dec); R_f =0.17 (16% EtOAchexanes); ¹H NMR (500 MHz, CDCl₃) δ 9.65 (d, J=7.7 Hz, 1H), 7.92 (brs, 1H), 7.84 (d, J=7.4 Hz, 1H), 7.75 (d, J=8.8 Hz, 1H), 7.62 (t, J=7.4 Hz, 1H), 7.57 (d, J=8.8 Hz, 1H), 7.53 (t, J=7.7 Hz, 1H), 4.29 (m, 1H), 4.14 (app t, J=8.8 Hz, 1H), 4.00 (m, 1H), 3.92 (app d, J=11 Hz, 1H), 3.45 (app t, J=11 Hz, 1H), 1.66 (s, 9H); ¹³C NMR (125 MHz, acetone- d_6) δ 157.4, 131.7, 130.8, 129.9, 128.8, 128.4, 127.4, 125.7, 121.7, 117.1, 115.6, 105.2, 102.4, 65.0, 53.4, 47.1, 28.9 (3C), 25.7; IR (film) $\nu_{\rm max}$ 3367, 2960, 2919, 1674, 1501, 1460, 1415, 1405, 1369, 1338, 1262, 1134 cm⁻¹; HRMALDI-FTMS (DHB) m/z 383.1283 (M⁺, C₂₂H₂₂ClNO₃ requires 383.1283).

4.13. 3-(*tert*-Butyloxycarbonyl)-1,2,11,11a-tetrahydrocyclopropa[c]naphtho[2,3-e]indol-4-one (22, *N*-Boc-CNI)

A sample of 21 (7.1 mg, 18.5 μmol) was dissolved in freshly distilled CH₃CN (200 µL) under Ar. Anhydrous DBU (14 µL, 92.5 μ mol) was added at 23 °C, and the mixture was stirred for 1 h. The reaction mixture was then concentrated under a stream of N₂ and applied directly to PTLC (SiO₂, 10×20 cm, 50% EtOAc/hexanes) to afford **22** (3.9 mg, 61%) as a white solid. Mp 61–63 °C; R_f =0.35 (50% EtOAc–hexanes); ¹H NMR (400 MHz, CDCl₃) δ 8.77 (s, 1H), 8.01 (d, *J*=8.1 Hz, 1H), 7.78 (d, *J*=8.0 Hz, 1H), 7.55 (dt, *J*=1.4, 7.5 Hz, 1H), 7.48 (dt, J=1.3, 7.5 Hz, 1H), 7.28 (s, 1H), 6.88 (br s, 1H), 4.05-4.04 (m, 1.05-4.04)2H), 2.90–2.85 (m, 1H), 1.64 (dd, *J*=4.3, 7.7 Hz, 1H), 1.58 (s, 9H), 1.52 (t, J=4.6 Hz, 1H); ¹³C NMR (100 MHz, acetone- d_6) δ 186.4, 162.4, 153.3, 138.7, 136.7, 133.4, 132.8, 131.3, 129.8, 129.1, 128.6, 127.8, 122.1, 109.5, 84.1, 54.9, 31.6, 29.2 (2C), 25.4; IR (film) ν_{max} 2977, 1723, 1614, 1382, 1256, 1160, 1140, 856, 748 cm $^{-1}$; HRMALDI-FTMS (DHB) m/z348.1600 (M+H⁺, C₂₂H₂₁NO₃ requires 348.1594). Compound (+)-22: $[\alpha]_D^{23}$ +80 (c 0.075, CHCl₃); (-)-22: $[\alpha]_D^{23}$ -87 (c 0.11, CHCl₃).

4.14. seco-CNI-TMI (23)

A sample of **21** (11.1 mg, 28.9 µmol) was treated with 4 N HCl/EtOAc (250 µL) and stirred at 23 °C for 1 h. The solvent was removed under a stream of N₂ and dried under high vacuum for 30 min. The gray residue was dissolved in DMF (20 µL) and treated with 5,6,7-trimethoxyindole-2-carboxylic acid²⁸ (8.0 mg, 31.8 µmol) and EDCI (16.7 mg, 86.8 µmol). The mixture was stirred under Ar at 23 °C for 18 h in the absence of light before the solvent was removed under a stream of N₂. PTLC (SiO₂, 20×20 cm, EtOAc) afforded **23** (7.1 mg, 47%) as a white solid. Mp 243–245 °C (dec); R_f =0.55 (50% EtOAchexanes); ¹H NMR (500 MHz, acetone- d_6) δ 10.38 (s, 1H), 8.29 (s, 1H), 7.93 (d, J=7.7 Hz, 1H), 7.86 (m, 2H), 7.64 (t, J=7.0 Hz, 1H), 7.18 (s, 1H), 7.01 (s, 1H), 4.81 (m, 1H), 4.35 (m, 1H), 4.09 (m, 2H), 4.05 (s, 3H), 3.89 (s, 3H), 3.88 (s, 3H), 3.80 (dd, J=8.8, 2.2 Hz, 1H); IR (film) ν_{max} 3426, 2903, 1723, 1313 cm⁻¹; HRMALDI-FTMS (DHB) m/z 517.1511 (M+H⁺, $C_{29}H_{25}$ ClN₂O₅ requires 517.1525).

4.15. CNI-TMI (24)

A sample of **21** (7.1 mg, 13.7 μmol) was dissolved in freshly distilled CH₃CN (140 μL) under Ar. Anhydrous DBU (10.5 μL, 68.7 μmol) was added at 23 °C, and the mixture was stirred for 1 h. The reaction mixture was then concentrated under a stream of N₂ and applied directly to PTLC (SiO₂, 10×20 cm, 50% EtOAc–hexanes) to afford **24** (4.0 mg, 60%) as a white solid. R_f =0.55 (50% EtOAc–hexanes); ¹H NMR (500 MHz, acetone- d_6) δ 10.48 (br s, 1H), 9.99 (s, 1H), 8.10 (d, J=8.5 Hz, 1H), 7.95 (d, J=6.6 Hz, 1H), 7.66 (app t, J=7.0 Hz, 1H), 7.56 (t, J=7.0 Hz, 1H), 7.26 (d, J=8.5 Hz, 1H), 7.16 (s, 1H), 7.11 (s, 1H), 6.96 (s, 1H), 4.68 (dd, J=9.9, 5.5 Hz, 1H), 4.59 (d, J=9.9 Hz, 1H), 4.02 (s, 3H), 3.87 (s, 6H), 3.33 (m, 1H), 1.97 (d, J=4.4 Hz, 1H), 1.79 (t, J=5.1 Hz, 1H); IR (film) ν _{max} 3297, 2919, 2854, 1650, 1601, 1385, 1261, 1229, 1105, 1045 cm⁻¹; HRMALDI-FTMS (DHB) m/z 481.1751 (M+H⁺, C₂₉H₂₄N₂O₅ requires 481.1758).

Compound (+)-**24**: $[\alpha]_D^{23}$ +160 (c 0.1, CHCl₃); (-)-**24**: $[\alpha]_D^{23}$ -160 (c 0.1, CHCl₃).

4.16. 4-*tert*-Butyl 1-ethyl 2-(naphthalen-8-yl-methylene)-butanedioate (26)

A solution of 4-*tert*-butyl 1-ethyl 2-(diethoxyphosphoryl)succinate²¹ (1.00 g, 3.0 mmol) in THF (10 mL) was cooled to 0 °C and NaH (60% oil dispersion, 79 mg, 3.3 mmol) was added in a single addition. The reaction mixture was gradually warmed to room temperature over 2 h before being recooled to 0 °C. A solution of 1-naphthaldehyde (462 mg, 3.0 mmol) in THF (5 mL) was added and the mixture was warmed to room temperature and stirred for 12 h. The mixture was diluted with EtOAc (100 mL), and washed with saturated aqueous NaHCO₃ (100 mL), dried (Na₂SO₄), and concentrated in vacuo. Flash chromatography (SiO₂, 2.5×25 cm, 0–5% EtOAc–hexanes gradient) afforded **26** (480 mg, 63%; typically 45–66%) as a yellow oil. ¹H NMR (250 MHz, CDCl₃) δ 8.35 (s, 1H), 7.97–7.86 (m, 3H), 7.58–7.41 (m, 4H), 4.37 (q, J=6.9 Hz, 2H), 3.35 (s, 2H), 1.46 (s, 9H), 1.41 (t, J=6.9 Hz, 3H); HRMALDI–FTMS (DHB) m/z 363.1564 (M+Na⁺, C₂₁H₂₄O₄ requires 363.1572).

4.17. Ethyl 1-hydroxyphenanthrene-3-carboxylate (27)

A solution of 26 (220 mg, 0.65 mmol) in TFA (3 mL) was cooled to 0 °C and H₂O (0.1 mL) was added. The reaction mixture was gradually warmed to room temperature over 2 h and the solvent was removed in vacuo, followed by azeotropic distillation with toluene (3×50 mL) until the TFA was completely removed. Ac₂O (3.5 mL) and NaOAc (53 mg, 0.65 mmol) were added and the mixture was warmed at 70 °C for 8 h. The mixture was cooled and the solvent was removed in vacuo, followed by azeotropic distillation with toluene (3×50 mL) until the Ac₂O was completely removed. The mixture was dissolved in EtOH (2.2 mL) and treated with K₂CO₃ (100 mg, 0.72 mmol) and the reaction mixture was stirred for 4 h at 23 °C. The mixture was diluted with EtOAc (50 mL), washed with saturated aqueous NH₄Cl (100 mL), dried (Na₂SO₄), and concentrated in vacuo. Flash chromatography (SiO₂, 2.5×25 cm, 5-20% EtOAc-hexanes gradient) afforded 27 (149 mg, 86%) as an off-white solid. ¹H NMR (250 MHz, CDCl₃) δ 9.00 (s, 1H), 8.73 (d, J=7.7 Hz, 1H), 8.22 (d, J=9.1 Hz, 1H), 7.93-7.81 (m, 3H), 7.72-7.60 (m, 2H), 6.79 (br s, 1H), 4.51 (q, *J*=6.9 Hz, 2H), 1.49 (t, *J*=6.9 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 167.3, 152.4, 132.3, 131.2, 130.4, 128.7, 128.5, 128.0, 127.1, 125.1, 123.3, 120.0, 117.6, 110.2, 61.5, 14.4; IR (film) ν_{max} 3370, 2925, 1682, 1434, 1372, 1273, 1250, 1025, 825, 749 cm⁻¹ HRMALDI-FTMS (DHB) m/z 266.0955 (M⁺, C₁₇H₁₄O₃ requires 266.0943).

4.18. Ethyl 1-benzyloxyphenanthrene-3-carboxylate (28)

A solution of 27 (400 mg, 1.5 mmol) in DMF (5 mL) was treated with K₂CO₃ (290 mg, 2.1 mmol) and Bu₄NI (12 mg, 0.03 mmol) and after 5 min, BnBr (214 µL, 1.8 mmol) was added. The mixture was stirred for 10 h at 23 °C, then diluted with EtOAc (50 mL) and washed with saturated aqueous NH₄Cl (100 mL). The organic layer was dried (Na₂SO₄) and concentrated in vacuo. Flash chromatography (SiO₂, 4×30 cm, 2–20% EtOAc–hexanes gradient) afforded **28** (507 mg, 95%) as an off-white solid. ¹H NMR (250 MHz, CDCl₃) δ 9.08 (s, 1H), 8.78 (d, J=8.4 Hz, 1H), 8.31 (d, J=9.1 Hz, 1H), 7.93 (d, *J*=7.7 Hz, 1H), 7.85 (d, *J*=9.1 Hz, 1H), 7.73–7.58 (m, 5H), 7.49–7.38 (m, 3H), 5.35 (s, 2H), 4.50 (q, J=7.3 Hz, 2H), 1.50 (t, J=7.3 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 166.9, 154.9, 136.7, 132.2, 130.8, 130.3, 128.6, 128.5, 128.2, 128.0, 127.6, 127.0, 126.9, 126.2, 120.2, 117.9, 106.6, 70.5, 61.2, 14.4; IR (film) ν_{max} 2894, 1713, 1272, 1026, 749 cm⁻¹; HRMALDI-FTMS (DHB) m/z 357.1498 (M+H⁺, C₂₄H₂₀O₃ requires 357.1491).

4.19. 1-Benzyloxyphenanthrene-3-carboxylic acid (29)

A solution of **28** (299 mg, 0.84 mmol) in 3:1:1 (v/v/v) THF–MeOH–H₂O (7.5 mL) was treated with LiOH (60 mg, 2.5 mmol) and stirred for 36 h at 23 °C. HCl (4 N, 10 mL) was added and the mixture was diluted with CH₂Cl₂ (25 mL). The organic layer was washed with H₂O (3×10 mL), dried (Na₂SO₄), and concentrated in vacuo. Flash chromatography (SiO₂, 1.5×12.7 cm, 50–100% EtOAchexanes gradient) afforded **29** (264 mg, 96%) as an off-white solid. Mp 266–269 °C (dec); ¹H NMR (250 MHz, DMSO- d_6) δ 8.99 (s, 1H), 8.82 (d, J=6.6 Hz, 1H), 8.21 (d, J=9.1 Hz, 1H), 8.06–8.02 (m, 1H), 7.99 (d, J=9.1 Hz, 1H), 7.72 (app t, J=9.1 Hz, 4H), 7.60 (d, J=6.6 Hz, 2H), 7.47–7.36 (m, 2H), 5.41 (s, 2H); ¹³C NMR (125 MHz, DMSO- d_6) δ 167.5, 154.4, 136.8, 131.8, 130.2, 129.6, 129.1, 128.7, 128.6, 128.5, 127.9, 127.5, 127.4, 125.3, 123.2, 119.6, 117.1, 107.0, 69.9; ESI (negative) m/z 327 (M–H, C₂₂H₁₅O₃).

4.20. 1-(Benzyloxy)-3-((*tert*-butyloxycarbonyl)amino)-phenanthrene (30)

A solution of **29** (200 mg, 0.6 mmol) in distilled *t*-BuOH (11 mL) was treated with distilled Et₃N (167 µL, 1.2 mmol) and DPPA (258 μ L, 1.2 mmol). The mixture was heated at 80 °C for 9 h then cooled to room temperature and diluted with EtOAc (1 mL). The solution was washed with saturated aqueous NaHCO₃ (2×10 mL), H₂O (10 mL), and saturated aqueous NaCl (10 mL). The organic layer was dried (Na₂SO₄) and concentrated in vacuo. Flash chromatography (SiO₂, 1×11 cm, 2–10% EtOAc–hexanes gradient) afforded **30** (183 mg, 76%) as an off-white solid. Mp 180-182 °C: ¹H NMR (500 MHz, CDCl₃) δ 8.56 (d, J=7.7 Hz, 1H), 8.21 (s, 1H), 8.19 (d, J=8.8 Hz, 1H), 7.86 (d, J=8.8 Hz, 1H), 7.62 (d, J=9.1 Hz, 1H), 7.60–7.55 (m, 4H), 7.44 (app t, J=7.7 Hz, 2H), 7.39-7.33 (m, 2H), 6.80 (br s, 1H), 5.23 (s, 2H), 1.59 (s, 9H); 13 C NMR (125 MHz, CDCl₃) δ 155.6, 152.8, 137.3, 136.9, 132.6, 132.0, 129.5, 128.6, 128.5, 128.0, 127.5, 126.7, 126.1, 124.5, 123.3, 122.1, 120.3, 119.7, 80.7, 70.4, 28.4 (3C); IR (film) v_{max} 3297, 2975, 1690, 1581, 1540, 1509, 1266, 1157, 815, 748 cm⁻¹; HRMALDI-FTMS (DHB) m/z 399.1835 (M⁺, C₂₆H₂₅NO₃ requires 399.1834).

4.21. 1-(Benzyloxy)-4-bromo-3-((*tert*-butyloxycarbonyl)-amino)phenanthrene (31)

A solution of **30** (100 mg, 0.25 mmol) in THF (6 mL) at -78 °C was treated with TsOH (25 mg, 0.13 mmol) in THF (3 mL). NBS (50 mg, 0.28 mmol) was added and the vial was protected from light and allowed to stir at -78 °C for 1 h. The reaction mixture was warmed to 23 °C and diluted with saturated aqueous NaHCO3 (1 mL). The mixture was diluted with EtOAc (25 mL) and washed with saturated aqueous NaHCO₃ (10 mL), H₂O (10 mL), and saturated aqueous NaCl (10 mL). The organic layer was dried (Na₂SO₄) and concentrated in vacuo. Flash chromatography (SiO₂, 4×20 cm, 2-5% EtOAc-hexanes gradient) afforded 31 (109 mg, 88%) as a white solid. ¹H NMR (500 MHz, CDCl₃) δ 9.67 (d, J=7.7 Hz, 1H), 8.21 (s, 1H), 8.18 (d, *J*=9.2 Hz, 1H), 7.82 (d, *J*=7.7 Hz, 1H), 7.64 (br s, 1H), 7.59 (d, *J*=8.8 Hz, 1H), 7.57-7.51 (m, 4H), 7.42-7.32 (m, 3H), 5.27 (s, 2H), 1.55 (s, 9H); 13 C NMR (125 MHz, CDCl₃) δ 154.5, 152.7, 136.8, 136.6, 134.2, 129.8, 129.4, 128.6, 128.3, 128.1, 127.8, 127.4, 126.9, 125.8, 124.4, 122.0, 120.0, 101.3, 99.6, 81.2, 70.7, 28.4 (3C); IR (film) ν_{max} 3405, 2912, 1733, 1600, 1523, 1482, 1221, 1149, 810, 749 cm⁻¹; HRMALDI-FTMS (DHB) m/z 500.0845 (M+Na⁺, C₂₆H₂₄BrNO₃ requires 500.0837).

For isomer (10 mg, 8%): 1 H NMR δ 8.74–7.72 (m, 1H), 8.15 (d, J=8.0 Hz, 1H), 8.04–7.85 (m, 4H), 7.74–7.38 (m, 6H), 7.03 (br s, 1H), 4.84 (t, J=10.6 Hz, 2H), 1.67 (s, 9H); HRMALDI–FTMS (DHB) m/z 500.0843 (M+Na⁺, C₂₆H₂₄BrNO₃ requires 500.0837).

4.22. 3-[*N*-(*tert*-Butyloxycarbonyl)-*N*-(3-chloroprop-2-en-1-yl)amino]-1-(benzyloxy)-4-bromophenanthrene (32)

A solution of 31 (50 mg, 0.10 mmol) in DMF (0.8 mL) was cooled to 0 °C. NaH (60% suspension in mineral oil, 12 mg, 0.30 mmol) was added and the solution was stirred for 0.25 h. The mixture was warmed to room temperature and 1.3-dichloropropene (28 uL. 0.3 mmol) was added. The vial was protected from light and allowed to stir for 2 h before being treated with saturated aqueous NaHCO₃ (5 mL). The mixture was extracted with Et₂O (3×25 mL), and the combined organic layers were washed with H2O (3×20 mL), dried (Na₂SO₄), and concentrated in vacuo. Flash chromatography (SiO₂, 3×20 cm, 16% EtOAc-hexanes) afforded 32 (63 mg, 96%) as a yellow oil and as a mixture of E- and Z-olefin isomers. ¹H NMR (250 MHz, CDCl₃) δ 9.93 (d, I=6.6 Hz, 1H), 8.32 (d, *J*=9.1 Hz, 1H), 7.91–7.89 (m, 1H), 7.78 (d, *J*=9.1 Hz, 1H), 7.64 (d, J=6.2 Hz, 2H), 7.56-7.52 (m, 2H), 7.48-7.35 (m, 4H), 7.00 (d, J=8.0 Hz, 1H), 6.92 (d, J=13.2 Hz, 1H), 6.17-5.97 (m, 1H), 5.29 (app t, J=6.2 Hz, 2H), 4.64-4.54 (m, 1H), 4.34 (dd, J=15.7, 5.1 Hz, 1H), 3.83 (dd, J=15.0, 7.7 Hz, 1H), 1.35 (s, 9H); IR (film) ν_{max} 2973, 2921, 1701, 1591, 1368, 1165, 753 cm⁻¹.

4.23. 5-(Benzyloxy)-3-(tert-butyloxycarbonyl)-1-(chloromethyl)-1,2-dihydronaphtho[1,2-e]indole (33)

A solution of **32** (20 mg, 40 μ mol) in C₆H₆ (2 mL) was degassed by three freeze-pump-thaw cycles and treated with AIBN (1 mg, 6 μmol) and Bu₃SnH (13 μL, 50 μmol). A stream of Ar was bubbled through the solution for 10 min before the reaction vessel was closed and warmed to 80 °C for 15 h after which an additional amount of Bu₃SnH (13 μL, 50 μmol) and AIBN (1 mg, 6 μmol) were added. The mixture was stirred for 3 h at 80 °C before being cooled to 23 °C and concentrated in vacuo. Flash chromatography (SiO₂, 3×20 cm, 2–10% EtOAc/hexanes gradient) afforded **33** (9 mg, 48%) as an off-white solid. ¹H NMR (500 MHz, CDCl₃) δ 8.06 (d, J=8.8 Hz, 1H), 7.93 (d, *J*=7.0 Hz, 1H), 7.81 (d, *J*=8.0 Hz, 1H), 7.62 (app t, J=7.7 Hz, 1H), 7.59–7.53 (m, 4H), 7.45 (app t, J=7.0 Hz, 2H), 7.38– 7.36 (m, 1H), 5.30 (s, 2H), 4.59 (t, *J*=9.2 Hz, 1H), 4.39 (d, *J*=8.8 Hz, 1H), 4.16 (t, J=9.7 Hz, 1H), 3.92 (d, J=11.4 Hz, 1H), 3.36 (t, J=11.0 Hz, 1H), 1.62 (s, 9H); IR (film) ν_{max} 3467, 2950, 1700, 1644, 1366, 1239, 1163, 1138, 833 cm⁻¹.

4.24. seco-N-Boc-iso-CNI (34)

A solution of **33** (20 mg, 0.04 mmol) in 3:1 (v/v) THF–MeOH (10 mL) was treated with a catalytic amount of 10% Pd/C (20 mg) and 25% aqueous HCO₂NH₄ (640 µL, 1.0 mmol). The mixture was stirred at 23 °C for 48 h, filtered through a Celite plug, and concentrated in vacuo. Flash chromatography (SiO₂, 1×10 cm, 10–20% EtOAc–hexanes gradient) afforded **34** (15 mg, 90%) as a yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 8.59 (d, J=8.5 Hz, 1H), 8.17 (d, J=9.2 Hz, 1H), 7.99 (br s, 1H), 7.91 (d, J=8.1 Hz, 1H), 7.62 (t, J=7.0 Hz, 1H), 7.61 (m, 3H), 6.51 (br s, 1H), 4.56 (app t, J=8.5 Hz, 1H), 4.35 (d, J=10.5 Hz, 1H), 4.14 (m, 1H), 3.90 (d, J=10.5 Hz, 1H), 3.35 (t, J=11.0 Hz, 1H), 1.63 (s, 9H); IR (film) $\nu_{\rm max}$ 3349, 2922, 1704, 1596, 1414, 1342, 1254, 1140, 747 cm⁻¹; ESI (negative) m/z 382 (M–H, C₂₂H₂₁ClNO₃).

4.25. Resolution of 34

The enantiomers of **34** were resolved on a HPLC semipreparative Diacel Chiralcel OD column (10 μ m, 2×25 cm) using 5% *i*-PrOH-hexane eluant (8 mL/min). The enantiomers eluted with retention times of 18.5 min (natural enantiomer) and 13.9 min (unnatural enantiomer, α =1.33). Compound (1*S*)-**34**: $[\alpha]_D^{23}$ -50 (*c* 0.01, THF); (1*R*)-**34**: $[\alpha]_D^{23}$ +50 (*c* 0.01, THF).

4.26. 3-(*tert*-Butyloxycarbonyl)-1,2,11,11a-tetrahydrocyclopropa[c]naphtho[1,2-e]indol-4-one (*N*-Boc-iso-CNI, 35)

A sample of **34** (2 mg, 5 μmol) was dissolved in 3:1 (v/v) THF-DMF (250 μL) under Ar and cooled to 0 °C. NaH (60% suspension in mineral oil, 600 μg, 15 μmol) was added and the mixture was stirred for 30 min. At this time, the reaction was quenched with the addition of pH 7.0 phosphate buffer (300 μL) and diluted with H₂O (1 mL) and EtOAc (5 mL). The organic layer was collected, dried (Na₂SO₄), and concentrated in vacuo. PTLC (SiO₂, 10×20 cm, 10% EtOAc-hexanes) afforded **35** (1.0 mg, 54%) as a white solid. ¹H NMR (600 MHz, CDCl₃) δ 8.56 (d, J=8.3 Hz, 1H), 8.07 (s, 1H), 7.82–7.79 (m, 1H), 7.70–7.65 (m, 3H), 6.91 (s, 1H), 3.72 (d, J=7.5 Hz, 1H), 3.65 (m, 2H), 1.47 (s, 9H), 0.92 (t, J=7.5 Hz, 1H), 0.88–0.87 (m, 1H); HRMALDI-FTMS (DHB) m/z 348.1600 (M+H⁺, C₂₂H₂₁NO₃ requires 348.1594). Compound (+)-**35**: $[\alpha]_D^{23}$ +75 (c 0.1, CHCl₃); (-)-**35**: $[\alpha]_D^{23}$ -75 (c 0.1, CHCl₃).

4.27. seco-iso-CNI-TMI (36)

A sample of 35 (1.55 mg, 5.5 μ mol) was treated with 4 N HCl/ EtOAc (100 μ L) and stirred at 23 °C for 1 h. The solvent was removed under a stream of N2 and dried under high vacuum for 30 min. The gray residue was dissolved in DMF (60 μ L) and treated acid²⁸ 5,6,7-trimethoxyindole-2-carboxylic 5.5 µmol) and EDCI (3.15 mg, 16 µmol). The mixture was stirred under Ar at 23 °C for 18 h in the absence of light before the solvent was removed under a stream on N₂. PTLC (SiO₂, 20×20 cm, 50% EtOAc-hexanes) afforded **36** (1.6 mg, 57%) as a white solid. ¹H NMR (500 MHz, CDCl₃) δ 9.73 (br s, 1H), 9.51 (s, 1H), 8.68 (s, 1H), 8.33 (d, J=8.8 Hz, 1H), 8.29 (d, J=7.4 Hz, 1H), 7.94 (d, J=7.4 Hz, 1H), 7.68(d, J=8.8 Hz, 1H), 7.60 (t, J=7.4 Hz, 1H), 7.54 (t, J=7.4 Hz, 1H), 6.74(s, 1H), 6.54 (s, 1H), 4.71 (app d, J=9.9 Hz, 1H), 4.60 (app t, J=8.1 Hz,1H), 4.46 (m, 1H), 4.18 (s, 3H), 4.00 (s, 3H), 3.87 (s, 3H), 3.69 (m, 1H), 3.24 (t, J=11.4 Hz, 1H); IR (film) ν_{max} 3411, 2959, 1591, 1454, 1412, 1318, 1260, 1107, 1050, 803 cm⁻¹; HRMALDI-FTMS (DHB) *m/z* 516.1430 (M⁺, C₂₉H₂₅ClN₂O₅ requires 516.1452). Compound (1S)-**36**: $[\alpha]_D^{23}$ +17 (c 2.0, CH₂Cl₂); (1R)-**36**: $[\alpha]_D^{23}$ -17 (c 1.0, CH₂Cl₂).

4.28. iso-CNI-TMI (37)

A sample of **36** (7.1 mg, 13.7 μmol) was dissolved in freshly distilled CH₃CN (140 μL) under Ar. Anhydrous DBU (10 μL, 68 μmol) was added at 23 °C, and the mixture was stirred for 1 h. The reaction mixture was then concentrated under a stream of N₂ and applied directly to PTLC (SiO₂, 10×20 cm, 50% EtOAc–hexanes) to afford **37** (4.0 mg, 60%) as a white solid. ¹H NMR δ 10.50 (br s, 1H), 8.55 (d, J=8.2 Hz, 1H), 8.06 (s, 1H), 7.85–7.80 (m, 1H), 7.70–7.65 (m, 3H), 7.17 (s, 1H), 6.04 (s, 1H), 6.90 (s, 1H), 4.18 (s, 3H), 4.00 (s, 3H), 3.85 (s, 3H), 3.70 (d, J=7.5 Hz, 1H), 3.65 (m, 2H), 0.90 (s, J=7.5 Hz, 1H); HRMALDI–FTMS (DHB) m/z 481.1759 (M+H⁺, C₂₉H₂₄N₂O₅ requires 481.1758). Compound (+)-**37**: [α] $_D^{23}$ +125 (c 0.1, THF); (–)-**37**: [α] $_D^{23}$ -120 (c 0.1, THF).

4.29. Aqueous solvolysis reactivity: pH 3

Compounds **22** and **35** (50 μ g) were dissolved in CH₃OH (1.5 mL) and mixed with pH 3 aqueous buffer (1.5 mL). The buffer contained 4:1:20 (v:v:v) 0.1 M citric acid, 0.2 M Na₂HPO₄, and deionized H₂O, respectively. Immediately after mixing, the UV spectra of the solution were measured against a reference solution containing CH₃OH (1.5 mL) and the aqueous buffer (1.5 mL), and this reading was used as the initial absorbance value. The solution was stoppered, protected from light, and allowed to stand at 25 °C. The UV spectra were recorded at regular intervals until a constant value was obtained for the long-wavelength absorbance. The increase of the absorbance at 230 nm was monitored. The solvolysis rate

constants for were determined from the slope of the line obtained from the least-squares treatment (r^2 =0.98) of the plot of $\ln[(A_f-A_i)/(A_f-A)]$ versus time.

Acknowledgements

We gratefully acknowledge the financial support of NIH (CA41986) and the Skaggs Institute for Chemical Biology. K.S.M. is a Skaggs fellow.

References and notes

- Chidester, C. G.; Krueger, W. C.; Mizsak, S. A.; Duchamp, D. J.; Martin, D. G. J. Am. Chem. Soc. 1981, 103, 7629; For a detailed discussion of the DNA alkylation selectivity of CC-1065, see: Boger, D. L.; Johnson, D. S.; Yun, W.; Tarby, C. M. Bioorg. Med. Chem. 1994, 2, 115; Boger; Coleman, R. S.; Invergo, B. J.; Sakya, S. M.; Ishizaki, T.; Munk, S. A.; Zarrinmayeh, H.; Kitos, P. A.; Thompson, S. C. J. Am. Chem. Soc. 1990, 112, 4623.
- Takahashi, I.; Takahashi, K.; Ichimura, M.; Morimoto, M.; Asano, K.; Kawamoto, I.; Tomita, F.; Nakano, H. J. Antibiot. 1988, 41, 1915; Duocarmycin A DNA alkylation properties: Boger, D. L.; Ishizaki, T.; Zarrinmayeh, H.; Munk, S. A.; Kitos, P. A.; Suntornwat, O. J. Am. Chem. Soc. 1990, 112, 8961; Boger, D. L.; Ishizaki, T.; Zarrinmayeh, H. J. Am. Chem. Soc. 1991, 113, 6645; Boger, D. L.; Yun, W.; Terishima, S.; Fukuda, Y.; Nakatani, K.; Kitos, P. A.; Jin, Q. Bioorg. Med. Chem. Lett. 1992, 2, 759; See also: Boger, D. L.; McKie, J. A.; Nishi, T.; Ogiku, T. J. Am. Chem. Soc. 1997, 119, 311 and 1996, 118, 2109.
- Ichimura, M.; Ogawa, T.; Takahashi, K.; Kobayashi, E.; Kawamoto, I.; Yasuzawa, T.; Takahashi, I.; Nakano, H. J. Antibiot. 1990, 43, 1037; Duocarmycin SA DNA alkylation properties: Boger, D. L.; Johnson, D. S.; Yun, W. J. Am. Chem. Soc. 1994, 116, 1635; Boger, D. L.; Yun, W. J. Am. Chem. Soc. 1993, 115, 9872; MacMillan, K. S.; Boger, D. L. J. Am. Chem. Soc. 2008, 130, 16521.
- Yasuzawa, T.; Muroi, K.; Ichimura, M.; Takahashi, I.; Ogawa, T.; Takahashi, K.; Sano, H.; Saitoh, Y. Chem. Pharm. Bull. 1995, 43, 378.
- Igarashi, Y.; Futamata, K.; Fujita, T.; Sekine, A.; Senda, H.; Naoki, H.; Furumai, T. J. Antibiot. 2003, 56, 107; Structure correction: Tichenor, M. S.; Kastrinsky, D. B.; Boger, D. L. J. Am. Chem. Soc. 2004, 126, 8396; DNA alkylation properties: Parrish, J. P.; Kastrinsky, D. B.; Wolkenberg, S. E.; Igarashi, Y.; Boger, D. L. J. Am. Chem. Soc. 2003, 125, 10971; Trzupek, J. D.; Gottesfeld, J. M.; Boger, D. L. Nat. Chem. Biol. 2006, 2, 79; Tichenor, M. S.; Trzupek, J. D.; Kastrinsky, D. B.; Shiga, F.; Hwang, I.; Boger, D. L. J. Am. Chem. Soc. 2006, 128, 15683; Tichenor, M. S.; MacMillan, K. S.; Trzupek, J. D.; Rayl, T. J.; Hwang, I.; Boger, D. L. J. Am. Chem. Soc. 2007, 129, 10858.
- Boger, D. L.; Johnson, D. S. Angew. Chem., Int. Ed. 1996, 35, 1438; For additional reviews, see: Tichenor, M. S.; Boger, D. L. Nat. Prod. Rep. 2008, 25, 220; Boger, D. L. Acc. Chem. Res. 1995, 28, 20; Boger, D. L.; Johnson, D. S. Proc. Natl. Acad. Sci. U.S.A. 1995, 92, 3642; Boger, D. L. Chemtracts: Org. Chem. 1991, 4, 329.
- 7. Warpehoski, M. A.; Hurley, L. H. Chem. Res. Toxicol. 1988, 1, 315.
- 8. Boger, D. L.; Garbaccio, R. M. Bioorg. Med. Chem. 1997, 5, 263.
- 9. Boger, D. L.; Garbaccio, R. M. Acc. Chem. Res. **1999**, 32, 1043.
- Wolkenberg, S. E.; Boger, D. L. Chem. Rev. 2002, 102, 2477; Tse, W.; Boger, D. L. Chem. Biol. 2004, 11, 1607.
- Ambroise, Y.; Boger, D. L. Bioorg. Med. Chem. Lett. 2002, 12, 303; Boger, D. L.; Garbaccio, R. M. J. Org. Chem. 1999, 64, 5666; Boger, D. L.; Santillan, A., Jr.; Searcey, M.; Jin, Q. J. Am. Chem. Soc. 1998, 120, 11554; Boger, D. L.; Boyce, C. W.; Johnson, D. S. Bioorg. Med. Chem. Lett. 1997, 7, 235; Boger, D. L.; Johnson, D. S. J. Am. Chem. Soc. 1995, 117, 1443; Boger, D. L.; Munk, S. A.; Zarrinmayeh, H. J. Am. Chem. Soc. 1991, 113, 3980; Boger, D. L.; Coleman, R. S.; Invergo, B. J.; Zarrinmayeh, H.; Kitos, P. A.; Thompson, S. C.; Leong, T.; McLaughlin, L. W. Chem. Biol. Interact. 1990, 73, 29; Boger, D. L.; Munk, S. A.; Zarrinmayeh, H.; Ishizaki, T.; Haught, L.; Bina, M. Tetrahedron 1991, 47, 2661.
- Boger, D. L.; Bollinger, B.; Hertzog, D. L.; Johnson, D. S.; Cai, H.; Mesini, P.; Garbaccio, R. M.; Jin, Q.; Kitos, P. A. J. Am. Chem. Soc. 1997, 119, 4987.
- Boger, D. L.; Hertzog, D. L.; Bollinger, B.; Johnson, D. S.; Cai, H.; Goldberg, J.; Turnbull, P. J. Am. Chem. Soc. 1997, 119, 4977.
- Boger, D. L.; Turnbull, P. J. Org. Chem. 1997, 62, 5849; Boger, D. L.; Turnbull, P. J. Org. Chem. 1998, 63, 8004.
- 15. Boger, D. L.; Boyce, C. W.; Garbaccio, R. M.; Goldberg, J. A. Chem. Rev. 1997, 97, 787.
- Parrish, J. P.; Hughes, T. V.; Hwang, I.; Boger, D. L. J. Am. Chem. Soc. 2004, 126, 80.
 For related studies, see: Boger, D. L.; Ishizaki, T. Tetrahedron Lett. 1990, 31, 793; Boger, D. L.; Munk, S. A.; Ishizaki, T. J. Am. Chem. Soc. 1991, 113, 2779; Boger, D. L.; Yun, W. J. Am. Chem. Soc. 1994, 116, 5523; Boger, D. L.; Yun, W. J. Am. Chem. Soc. 1994, 116, 7996; Boger, D. L.; Santillan, A., Jr.; Searcey, M.; Brunette, S. R.; Wolkenberg, S. E.; Hedrick, M. P.; Jin, Q. J. Org. Chem. 2000, 65, 4101.
- Boger, D. L.; Ishizaki, T.; Wysocki, R. J., Jr.; Munk, S. A.; Kitos, P. A.; Suntornwat, O. J. Am. Chem. Soc. 1989, 111, 6461; Boger, D. L.; Ishizaki, T.; Kitos, P. A.; Suntornwat, O. J. Org. Chem. 1990, 55, 5823.
- Boger, D. L.; Yun, W.; Teegarden, B. R. J. Org. Chem. 1992, 57, 2873; Boger, D. L.;
 McKie, J. A. J. Org. Chem. 1995, 60, 1271; Boger, D. L.; McKie, J. A.; Boyce, C. W.
 Synlett 1997, 515; Kastrinsky, D. B.; Boger, D. L. J. Org. Chem. 2004, 69, 2284.
- 20. Boger, D. L.; Munk, S. A. J. Am. Chem. Soc. 1992, 114, 5487.
- Gallagher, P. T.; Hicks, T. A.; Lightfoot, A. P.; Owten, W. M. Tetrahedron Lett. 1994, 35, 289; For implementation in related studies, see: Boger, D. L.; McKie, J. A.; Cai, H.; Cacciari, B.; Baraldi, P. G. J. Org. Chem. 1996, 61, 1710; Boger, D. L.; Han,

- N.; Tarby, C. M.; Boyce, C. W.; Cai, H.; Jin, Q.; Kitos, P. A. J. Org. Chem. 1996, 61, 4894; Tichenor, M. S.; MacMillan, K. S.; Stover, J. S.; Wolkenberg, S. E.; Pavani, M. G.; Zanella, L.; Zaid, A. N.; Spalluto, G.; Rayl, T. J.; Hwang, I.; Boger, D. L. J. Am. Chem. Soc. 2007, 129, 14092.
- 22. Boger, D. L.; Boyce, C. W.; Garbaccio, R. M.; Searcey, M. Tetrahedron Lett. 1998, 39, 2227.
- 23. Interestingly, the substrates bearing a C1-I as well as a C1-H (vs 13) preferentially cyclized to the phenanthrene skeleton.
- 24. The structure of **33** was confirmed with a single crystal X-ray structure determination of red prisms (EtOAc-hexane) of the corresponding methoxycarbonyl derivative prepared by acid-catalyzed Boc deprotection (4 N HCl-EtOAc, 25 °C, 30 min) and treatment with ClCO₂Me (THF, NaHCO₃, 67%).
- 25. Boger, D. L.; Coleman, R. S.; Invergo, B. J.; Sakya, S. M.; Ishizaki, T.; Munk, S. A.; Zarrinmayeh, H.; Kitos, P. A.; Thompson, S. C. J. Am. Chem. Soc. 1990, 112, 4623; Boger, D. L.; Coleman, R. S. J. Am. Chem. Soc. 1988, 110, 4796; Boger, D. L.; Coleman, R. S. J. Am. Chem. Soc. 1988, 110, 1321; Boger, D. L.; Coleman, R. S. J. Am. Chem. Soc. 1987, 109, 2717.
- 26. Boger, D. L.; Machiya, K.; Hertzog, D. L.; Kitos, P. A.; Holmes, D. J. Am. Chem. Soc. 1993, 115, 9025; Boger, D. L.; Machiya, K. J. Am. Chem. Soc. 1992, 114, 10056; Tichenor, M. S.; Trzupek, J. D.; Kastrinsky, D. B.; Shiga, F.; Hwang, I.; Boger, D. L. J. Am. Chem. Soc. 2006, 128, 15683.
- Boger, D. L.; Yun, W. J. Am. Chem. Soc. 1994, 11, 7996.
 Boger, D. L.; Ishizaki, T.; Zarrinmayeh, H.; Kitos, P. A.; Suntornwat, O. J. Org. Chem. **1990**, 55, 4499.